Lectures on Harmonic Maps

نویسندگان

  • Peter Li
  • PETER LI
چکیده

§1 Background and Setup Let M be an m-dimensional, compact, Riemannian manifold endowed with the metric dsM = gij dx i dx , where {x, x, · · · , x} is a local coordinate system of M. Suppose N is an n-dimensional, complete, Riemannian manifold with metric given by dsN = hαβ du α du , where {u, u, · · · , u} is a local coordinate system of N. Let f : M → N be a C mapping from M into N . Definition 1.1. The energy density of f is defined to be the trace of the pullback of the metric of N by f . It is denoted by e(f) = trMf (dsN ). The total energy of f us defined by the integral of the energy density over M, denoted by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some geometrical properties of the oscillator group

‎We consider the oscillator group equipped with‎ ‎a biinvariant Lorentzian metric‎. ‎Some geometrical properties of this space and the harmonicity properties of left-invariant vector fields on this space are determined‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional‎ ‎restricted to vector fields‎. ‎Left-invariant vector fields defining harmonic maps are...

متن کامل

Harmonic mapping problem in the plane

This article is an expanded version of lectures given by the first author at the International Workshop on Harmonic and Quasiconformal Mappings (Chennai, August 2010). They are based on several papers written by Tadeusz Iwaniec and the authors, some of which are also joint with Ngin-Tee Koh.

متن کامل

List of contributions

Harmonic maps between Riemannian manifolds are maps which extremize a certain natural energy functional; they appear in particle physics as nonlinear sigma models. Their infinitesimal deformations are called Jacobi fields. It is important to know whether the Jacobi fields along the harmonic maps between given Riemannian manifolds are integrable, i.e., arise from genuine variations through harmo...

متن کامل

ON f -BI-HARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS

A. Both bi-harmonic map and f -harmonic map have nice physical motivation and applications. In this paper, by combination of these two harmonic maps, we introduce and study f -bi-harmonic maps as the critical points of the f -bi-energy functional 1 2 ∫ M f |τ(φ)| dvg. This class of maps generalizes both concepts of harmonic maps and biharmonic maps. We first derive the f -biharmonic map ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011